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A procedu re for the numerical approximation of the Cauchy problem for

the following linear parabolic partial differential  equ ation is def ined:

u~ 
— (p (x ) u ) + q ( x ) u  = 0 , 0 < x < 1 , 0 < t <T; u(O ,t) =

0 < t < T~ u ( l ,t) = f
2
(t), 0 < t <T ; p (O)u (0,t) = g(t),

O < t
0

< t < T ;  u(x ,t ) I  < M , O < x < l , 0 < t < T

The procedure involves Gale rk in type numerical method s for related parabolic

initial boundary -value problems and a linear programm in g problem. Explicit

a priori error estimates are pre sented for the entire discrete procedure

when the dat a f
1,f 2 , and g are known only approximately.

AMS (MOS) Subject Classifications: 65M30, 65N30

Key Words : Cauchy problem , error estimates , improperly posed problem.

Work Unit Number: 7 - Numerical Analysis
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SIGNIF ICAN CE AND EXPLAN ATION

In man y physical problems in heat conduction, it is impossible to obtain

an initial temperature distribotiori within a material. In many of these

case s, in order to obtain approximations of the temperature within the body,

one must re ly entire ly upon dat a which can be measured at the boundary.

An additional problem is that the se boundary data are only accurate to within

some prescribed measurement errors.

The purpose of this paper is to define a procedure for numerically

approximating the solution of one such heat flow problem and to present

explicit error estimates for the numerical procedure. A priori error

estimates are presented when the data are known only approximately.

The responsibility for the wording and views e xpressed in this  descriptive summary
lies with MPC , and not with the authors of t h i s  report .
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NuMERIcAL ~.PPROX D4AT ION 0? A CAU CM? PROBLEM
FOR A PARARO LI c PA1~TIAL DIFFERENTIAL E~~JATION

Richard E. Ewin g and Richard S. Falk

1. Introduct ion.

Consider the numerical approx imat ion of the solu t ion of t he following Cauchy problem

f or a linear para~~~lic partial diffe rential equation .

Problem ( P ) :  Fin d a function u = u(x ,t )  satisfyin g

a) - (p (x)  ) + q(x )u  = 0 , 0 < x < 1 , o < t < T

b) u (0 ,t )  = f
1

(t)  o < t < T

(1 . 1)  c)  u ( l , t )  = f
2

( t ) ,  o < t < T ,

d) p ( O )  (O ,t )  g ( t ) ,  0 ~ t~~~~t < T

e) u(x ,t ) I  < M , 0 < x < 1 0 < t < T

where the data f
1
, f

2 , and g are Imown only approx imately as ~~~~~~~ and g * such that

a) If 1 
— f~II (o ,T]

(1.2) b) If 2 
— f~II to,T1 ~ c~

c) h g — gall 
(t

0 ,T] ~~- 
E:
o

with > 0 and where for any fun ction f = f ( t )

( 1.3) h i fIl 
[a b] SUP f (t)

a < t < b

We assume that the following hypothese s are satisfied:

(Hi)  f
1 , f 2 ,g, p , and q are such that a classical solution u to (1.1 )  exists.

( H2 ) The fun ct ion s p . p and q are uniformly Holde r cont inuou s in 0 < x < 1

and satisf y

a) 0 <  p
~ 

< p (x)  < p*

b) 0 ~~~~ < q(x) < q *

c) Ip ’ (x) ( < p ~*

(H3 ) f 1 and f
2 

are continuously differentiable and a constant K
1 
exists such

that

hlf 1Il L O T) + IIf~hI (O ,T] + Hf211 L0 ,T1 + h I f~lI LO T) + ~~~~~ [t 0 , T 1 ~~
- K1

Spon sored by the United States Army under CcntractNumbers DAAG29 -75 -C-002 4 and DAAG29-78-
G— O l 6 l.  Thi s material is based upon work supported by the Nation al Science Foundation
under Gran t Numbers McS78 -09525 and MCS78—02 737.
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(H4 ) For the Sturm-Liouville problem with eigenva iues and corresponding normalized

eigenfun ctions, sat isfying

a) (p~’ ’ )  - q~’ + A
n~P n 

= 0 , 0 < x < 1

b) 
~~ 

(0) = ~~ ( 1)  = 0n n

there exists a d > 0 such that

d = i n f ( A  — A ) .
~ n +l n

(115) The approximations (1.2) hold. In addition

a) hI f~ + f~~h i (o,T) ~~. £~~

b) If~ — f~ ’il [O ,T]
(H6 ) If M > 0 is the constant given in (1 .l . e ),  we have

a) bl f 1ih 
O T

b) ii f211 [O ,T] — 
M

c) ii f~h i 
[O ,T) ~ H

d) hi f~ih 
(0 ,T) ~ M

Without the extra assumption (l.l.e), the Cauchy problem (1 .1.a—d ) is not well—

posed in the sen se of Hadamard (3 ,4,5,6,7,8,13) sin ce the solution doe s not depend contin-

uously upon the data. However , for the problem as stated with hyr ’t he se s (H 1)-(H6 )

satisfied , a continuous dependence result was obtained in (6) .

Many studies of the continuous dependence of the Cauchy problem for various para-

bolic problems have appeared in the literature [3—8 . 13).  Other formulations in terms of

control problems have also appeared in the control theory l i terature  (11 , 12 , 14) . In [7)

Ginsberg considered numerical approximation of the Cauchy problem for the heat equation

U~ Uxx with g ( t ) 0 in ( l . l . e )  by expanding the data in Fourier series and est imating

Fourier coefficients. In (3 ,4] Cannon and Douglas outlined rumerical procedures for various

Cauchy problems for the heat equation by reducing the prob~ as to mathematical prograimt~thg

techniques. In (5]  Cannon and one of the authors presented a dire ct numerical method for a

sli ghtly d i f fe ren t Cauchy problem for the heat equation in which a Taylor series expansion

fo r the data is numerically approximated. In [6) a numerical scheme requ iring n unw~r ica1

approximation of several unkn own eigenvalues and eigen fun ctions was presented without

explicit error estimates for the approximations. In this paper the numerical schemes

— 2 —
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ir/ v~~ivc onl y ~olu t lon of linear parabolic in i t ia l  boundary-value problems cnd a simple

linear  programmin g problem. More importantly, explicit a priori error estimates for the

an t i  ~~ r / / / : ~ du t~ are  ~~~ sented.

In Sect ion 2 , basic no ta t ion  is presented  and Problem (P) is redu ced by linearity

in tu  two s imp le ini t ia l  boundary-va lue  problems and an optimization problem. In Sect ion 3.

Galerkin type numerical schemes are defin ed for the init ial boun dary-value problems and

a l inear  programming problem is form ulated to solve the optim ization problem. Several

basic lemmas needed to prove the main result are stated in Section 4. Then a priori error

es t imates  for obtai n in g approximation s to (1.1) with approximate data satisfying (1.2) are

a ta ted  and proved. Final ly  proofs of two of the technical  lemmas are given.

—3—
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2. Preliminaries.

We shall first define some of the notat ions used for various norms throughout the

paper. Recall that in Section 1 we used the notation that , for any funct ion f = f ( t )

hh fii (a b] - sup If (t ) I .
a < t < b

For functions ~ = ~(x) defined on (0,1) ,  we shall den ote by ij~ the norm ii~~ii
L (0,1)

and by W’~’~
° (m a positive integer) the usual Sobolev space of functions with norm

m j

~~~~ ~ 
14

j=O ax 3

For real s , we further denote by H
S 

the Sobolev space W~~
2 

of real-valued functions

defined on (0,1) and by ii ~Ii its corresponding norm. We note that L
2 (0 ,1) will be

denoted by H
O and ~~~ 2 

by h i *  h i 0 . For definitions of the other spaces, we r e fe r
L (0 ,1)

the reader to [101

Also , for X a normed space with norm hi •  li x and U: [a ,b) • X , we define

bl uhi 22 S f~ h u (.,t)ii~ at
L (a,b ;X) a

and

H ull 
= 

E SUp liu (. ,t)ii
~L (a ,b;X) a < t < b

Finally, for convenience , we define a bilinear form

a(u,v) S (p(.)u ,v )  + (q(~~)u ,v)

where (. ,.) denotes the L
2 (O ,l) inner product.

We shall next present a reformulation of Problem (P) on which our approximation

scheme will be based. We first define a function w satisfying the in i t ia l  boundary

value problem

a) — 
~~

— (p ) + qw = F ( x , t ) ,  0 < x < 1, 0 < t < T

b) w ( 0 , t )  = 0 , 0 < t < T
( 2 . 1 )

c) w ( l , t ) = O , 0 < t ’ T ,

d) w ( x , 0) = 0 , 0 < x < 1

whe re

(2.2) F(x,t) = — ( 1 — x ) f ~, ( t )  — xf (t )  + p ’ (x)(f
2
(t) — f

1
(t)) — qt (l—x)f

1
(t) + xf 2 ( t ) ) .

—4—



Also, for each ‘~ s L2 (O ,l), we define a function z~ satisfying t he  ini t ial  boundary

value problem :

a) ~~~- — ~~~~~(p~~~~- )  + q z~’ O , O < x < 1  , O < t ~~~ T

b) z~~(O, t ) O , O < t < T ,
(2.3)

c) z~ (l ,t) 0 , 0 < t < 1 ’

d) z*(x,0) = ~ji , 0 < x < 1

Using M from (l.l.d), let

K S  {‘p € C0(Q ,1): ~~ < M  and ~ (O) = f
1
(O), ~ (l) f

2
(O)}.

We can now reformulate Problem (I’) using (2.l)— (2.3) and linearity of the operator in (1.1)

as follows:

Find P (corresponding to u(x,0) from (1.1)) with ~ € K such that

p(O) (0,t) = g(t) — p (O) 
~~~~

. (O ,t) — p(0)[f
2
(t) — f

1
(t ) 1

(2.4) x

S G(t)

where

(2.5) r(x) S (1—x)f 1
(O) + xf2

(O)

To see that this reformulation is equivalent to Problem (P), observe that, using

linearity , the function

w + z ’~ + (1—x)f (t) + xf (t)

t satisfies 

1 2

a) ~4~— - (p -) + = 0 , 0 < x < 1, 0 < t < ‘I ,

b) u~ (O,t) = f
1

( t)  , 0 < t ~ T,

(2.6) c) u*(l ,t) = f
2

(t)  , 0 < t < T

d) u’~(x,0) ~i + (l—x)f 1
(O) + xf2(O), 

0 < x < 1

e) p ( 0 ) u ~ (O ,t )  = p(0)w
~
(O,t) + p(O)z~ (0,t) + p ( O )  tf

2 
( t) — f

1
( t ) ) ,  t

0 
t T.

Choosing ~p ~ -r, we see that ~~~~~ solves problem (I’) provided we can find a ~ satis-

fying (2.4). (We note that since f1(t)t 
< M  and f2

(t)~ 
< H , 0 < t  < T, the maximum

principle implies that the condition )~ ) < M is equivalent to requiring t hat

(u(x,t)~ < H , for 0 < z  < 1  , 0 < t  < T.)

— 5 —
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Using this notation , we can now state a form of the cont inuou s dependence resu lt

(proved in 161 ) which we shall need later in the derivation of the error estimates.

Lema 1: Under hypot he se s (111) - (H6), there cxi st comput able con stants C1 and ~

(0 ~ y < 1) such that for all ~ with 44 < M  ,

(2. 7) h i Z
~

i h
L=(tO ,T;W

l~=) ~
c1 llz~~(o , . ll ~~

0,
~~ ‘

where z~ is the solution of (2.3).

-6—
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3. a_ r~Q~~ .r n t I. ~ N u . ~~~ . i , ApproXUnat1oris.

t i  t h i s  .~~ct u t  w~ . t • , j , j ~~r the problem of numerically approximat in g the solution of

(1.1) m r  ~qui.’ ilut t , ts i~~ Lurmulation described in Section 2 )  subject to the restr ic t ion

i i...). ‘l i te i strictiuct (1.2) comes from the fact that  data measurement error is , in general ,

u ni a t, u n i v  to ‘sit t i l t  some mensuremont tolerance . We denote by F* the function

‘dt u n e d  b’; ‘~‘ 1 !a ~~~~~ an d f
2
, in (2 .2 ) ,  by and f~ respectively. We further

Ic t ine ..‘ u tu e solution of (2.1) with F replaced by the F* defined above ,

(3.1) r’(x) a (l—x)f~ (O) + xf ~~(0)

and

(3 . 2 )  G’it) a g * ( t ) - p ( 0 )  - (U ,t) - p(O) [f~~(t ) - f~~(t) ]

We note i n n ’  t ha t  from ( H 5 ) ,  (H 6)  , (2.5), and (3.1) we have

a) ri < m t

(a.3) b) L~ N

c) h r—i * 11
0 ~~~~~~ *

max C (l—x) If 1 (0) — f~ (0) I + x j f 2 
(0)  — f~~(0) I)

O < x < l

Siii’.2e the. bit. . is ni t  Ly known approximately as described above , we now def ine  an

approximat i i i  - v i e r n e  ba l ;& I on a f it i t e  dimensional  analogue of equation ( 2 . 4 )  with G

ni Lani I by ~~ from (3.2). ~~ first Inscribe sche me s for obtaining approximations to

w and z ( - ~~~lnhing is known ) .

in i t -  tn e  Spai n of continuous piecewise polynomials of degree 8—1

do f i n .  I on a u n i f o r m  mesh at  wid th  h on [0,1] and vanishing at x = 0 and x = 1.

l ie shall con .~idu r a family of s u c P  space s f o r  0 < h < 1 . We assume each space in this

family satisfiec the following so-called ‘ inverse assumption s ’: u € S~ implies that for

som e con st an t C
2
,

a )  u~ 1 
< C ~h ’I u I ,

(3.4) ‘ —
—1/2

b) u 1 C
2 

h u

Wi also natume that our test space s s~ satisfy the following approximation assumptions:

if u S
m
13 an d 1

h~
’ is the interpolate of u in S~ , then for some constan t C

3

— 7—
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a) ihu — I uhb < C h5 l u hi , s >
h 0 —  3 s —

(3.5)
b) II hUI l =  :ic3 1u 1 1,,,.

Let k > 0 be the step size in time , N
T 

= T/k € Z ~
n 

= nk , and - = It°)

We shall present a Crank-Nicolson—Galerkin approximation for w , the solution of ( 2 . l ) - ( 2 . 2 ) .

Define W : Co = t
0
,t
1 

t
N 

= -+ 
h
1 

by

(3.6) ,v) + a (

W
fl+l ~~ 

, v~~= (F (~~, (n+

for all V € S~~ and n = 0,1 N
T
_l , with W

0 
5 0 , where a(•,•) is defined in

Section 2. We similarly define W~ to be the analogous approx imation to w~ (nk)  g iven

by (2.l)—(2 .2) with F replaced by F*.

The scheme defined in (3.6) is kn own to have a time—truncat ion error of the order

~
2
• We shall, use another 0(k2) time—stepping method with better stability properties but

greater work estimates to approximate z , the solution of (2.3) with ~i assumed known .

Def ine ZtP : {O = 
N TI -

~ S~ by

z
th) _ z tti

( fl+5 n i
,v j + a ( Z  ,v ) = O

ak n+ct

(3. 7)
z ihi _ z t

~
( 

n+1 ~ ,v) + a (Z ~ ,v )  = 
— (l~~~) a (Z~ ,v)

n+l a n+a

with

(3.8) (Z~~,v)  = (tp , v)

2for all v e where a = 1 -

We note that since each of the time stepping schemes def ined above have 0(k 2 )

t ime—discretization error bot d i f fe rent  spacial orders of approx imation , we shall use the

time step k to tie the two approximat ion s together. Thu s k will be the same in each

of (3 .6)  and ( 3 . 7 ) .  We shall the n see that in orde r to balan ce the temporal and spatial

discretization errors in each problem separately,  we shall let h = k in the de fini t ion

of Z ari d h1 
= k 1”2 in the de f in ition of W

Let N
0 

= ~t0/k]k 1 where ~~ I I ,  for  a 1k , is the greatest integer less than

Using the above definition s , we can now def ine  an ap proximat e pro blem as fol lows :

—8—
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Problem (P
A
): Find 

~h 
K.~ such that

inf

~h~~ h

where

a) K
b 

= 
~~h 

S
~~: I ~~h I < M , 

~ h 10
~ 

= f~~( 0 ) ,  and ~. ( l)  =

(3 .10)

b) 3(i)t ) = 
fl=N Q

~~~~. ~~~ 
(zik) — p ( 0) ( f ~~(nk)  — f~~(n k ) 1

a 3
— p ( O )  ~~ - W ~~(0) — p ( O )  

~~~
Z
n 

(O)j.

We then take as our approxiamtion to u ( t)  at t = nk the f u n c t io n

(3.11) U
n 

= W~ + Z
n + ( 1 — x ) f ~~(nk)  + xf~~(n k)

We now show how Problem 1
~ A~ 

can be solved by linear programming.

Let h be such that H = 1/b € 72 arid

H-i
(3.12) t)

~h 
= ~ C .~~. + f~~( 0) 4

0 +
1=1

where

1 x <

I x/h — ( i— l ) , ( i — l ) h  < x < in
(3.13) 

~~
. = < ‘
‘ 1 l+i — x/h , lb < x < ( i+ l)h ,

L 0 , x >

Note that the constraint 
‘~ h

1 = 
< M  is equivalent to C

~~J < M , i = 1 H— l and

I f  0)1 < M  , i = 1,2. Then , by l inearity,

~ —r~ H—i ~~ . f* (0)~~ +f *  (0) 
~ *(3.14) z h (0) = C . -

~
— z ‘(0) + ~ 

1 0 2 H
(Q) — ~ ~r 

~~ax r~ ~ ax n 3x n lx n1=1

Hence Problem 
~~~ 

can be written as :

Find d~ = (C
1
,... ,C

u i
) min imiz ing  A subject to the con straints

a) —M C , < H , i = 1 H—i , and

(3.15) b) -A < g* (:k) - p ( 0 )  (f ~~(nk) - f~~(n k ) ]  - p ( O )  W~~(0)

13—1 4’ f* (0)4’ .ff* (0) 
~
‘

—p(Q) 
~ ~~ . -a-. Z 1( Q) + ~ 

1 0 2 N~~~ — ! 5r ( 0 ) ]
l a x  n ax n lx n

< A , n = N
0
,... ,N

T

—9—
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4 .  Main Results.

In order to derive our main result , we shall need several leninas about the regularity

and approximation of the solutions of (2.l)— (2.2) and (2.3) and the stability of problem

(3.6). We shall now state these leumtas. The f i r st lema relates the ~itoothness of the

solution of (2.3) to its initial mnoothness and can be found in [2].

Lenina 2: Let Z~4~ be the solution of problem (2.3). Then for 0 < t
0 < t and s > 0,

there exists a constant C
4 

such that

(4.1) hh Z~~(~~,t)II < C 4
t~~

”2hI~jhI
0

Lema 3: (c.f. Wheeler[lS]). Let w be the solution of (2.1)—(2.2) and (w ) be its

::Proxim:
tion given by (3.6). If w a L (0,T;W

4
’), ~~ € L

2
(0,T;H~ ) ,  and 

n

—
~~ e L (0,T;H ), then there are constants C

4 and k > 0 such that for all 0 < k k
at 0 0

we have for n = 0,... ,N,~,,

(4. 2)  jw(.,nk) — w < C Ch 4 [Ih wIl +Ih’ ~~ h h I + k
2

hI ’~~i I)n = — 4 1 L ( 0 ,T ; W 4 ’ ) lt L2 (0 , T;H 4 ) lt 3 L2 (0 ,T; H °)

We remark that sufficient conditions for w to have the regularity required by

lenlna 3 are that

a) Ftt  C L
2
(Q,T;H°)

(4 . 3 )  b) F (x ,Q) = 0 for x = 0 and x = 1, and

c)  ~~~~ (p IF(x ,0) 
— qF (x , o) + Ft

(x ,0) = 0 , for x = 0,1,

where F is given in ( 2 . 2 ) .  The se are natural compatibility assun~ttions on the data whose

satisfactions are assumed with the hypothesis of the exi stence of a suff icient ly smooth

classical solution of the problem (1.1). Whe n ( 4 . 3 )  is satisfied , we have by standard

a priori estimates that for n = 0,...

(4.4) Iw(~~
,nk) — W I  < C

5
(h~ + k

2
}

where C
5 

depends only upon the data f
1
,f
2
, p, and q . Using the inverse properties (3.4)

- sati s f ied  by the subspace S~ , we easily obtain the following result by a standard technique .
1

corollary (3.1). There exists a constant C
6 

such that for n = 0,... ,N
T •

(1.5) Iw( .,n k )  — W < 
~~~~ 

Eh~ + k
2
] .

n 
1

Our next lemma allows us to obtain L —estimates for the error in approximation of

(2.3) by (3.7) for times bounded away from t = 0 (i.e. 0 < t
0 

< t ) .

—10—
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. av’ a - ~ (e .~~ . se~- - 2  • . a l [ 1 ] ) . b t  ~~ be the solution of ( 2 . 3 )  and the

i t  .~~i ’i : (~~.7) 
‘ t i n  th ,  ri exist s constants C

7 C,~~(t
0

) such that for

n = N 

2 2
1 )  z ( ~~~~~ - - ;  c .~ {h k }Ih gIl

Ag - itt , a - i t  t sn: : i t v , - t u n  assumptions on S~ , We obtain

‘i t S t t C  e x i st s  a constan t C
8 

such that for n = N
0
,... ,N

T
,

( 4 . 7 )  z~~
( . ,n k )  - z~~h 1 ,  ~~~~~~ [h ~ + k

2
]Ih~ h h 0

i’iit .;ial l also r eq u i r e  a special stability re su lt for the approximation scheme ( 3 . 6 ) .

Since the proof of the L a l t a n in g lenmia is quite techn ical , we shall defer it until after

the p rn’s! a! al it  a t  I i.’Su Lt.

Lemma 5. Let ‘W } be ‘he  solution of (3.6). If for some constant t
0 

>0 , we restrict

k and h
1 

such tt ,t k1t~ 
~ 

, then there is a constant C
9 

such that

(4 . 8)  C2 tF F Ib
~ L ( 0 , T ;H °) .

The last  lemma 5 } , i C f l  se ~i a l L state gives an a priori estimate for the linear pro-

granting y r i t - I n “li-fined in (3.15). Again the proof of this lenina will be deferred until

a f t e r  t. i te  ; ran! of our main result.

Le.rtina 6. Let ‘ .‘

~~ 
3~ the solution of the linear programming problem (3.15). Then

there X i t ; t  s a tan shant C
10 

such  that

~t _r*
( 4 , d )  

, 
g* (nk).~~(p) [f~~(nk)-f~~(nk)]-p (0)~~-. W*(O)_p (O)~~

_ 5 h (0)1 = 

T

+ h + th~ + k
2

]/h
1 

+ [h 2 
+ k

2]/h }.

W~ a t , , :~a in a position to state our major result and prove it using Leninas 1-6.

Thear ’ - r ,  Let u I a -  the i t i t i on  of Problem (P ) and C U )  be the approx imation def ined

t’y Problem and ( 3 . 1 1 ) .  Suppose that  hypothe se s ( H l ) — ( H 6 ) are sat isf ied,  that F

(do ’ 1 s t  3 b y (2  . 2) ~ s i t  .3 tea the regularity conditons (4.3) and that ~ = u (x , 0) satisfies

l.a,
1 ~~ ~ur  some a st in t  C11 > 0 . If the mesh sizes k ,h, and h

1 
are chosen to

sat i.;f ~ ’ k = h = h~~, then the re exists a constant C
12 which is independent of k such

f, : ii

(4.1) ‘i(~~,nk) — ‘
~~~~1 

-, C12
[r
0 

+

— 11—
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where and y are the constants defined by (H5) and (2.7) respectivel y.

Proof : In the reformulation of problem (P) , we wrote the solution as

(4.11) u = u’
~ 

r 
= ~ + ~~ 

r 
+ ( l— x ) f

1
( t )  + xf

2
( t)

Fr an (3 .11)  we have
~

(4 .12 ) U = W* + z h 
+ (1_ x) f* (nk) + xf* (nk ) .

n n n 1 2

Using the triangle inequality, we obtain

Iu (~ ,nk) — ii I < Iw(~ ,nk) — w + 1w —n l ,o*~~ n l , n n l ,=

(4.13) ~ _r*
+ z~~~

(.,nk) — z ” 
1 

+ 21f 1(nk) — f~ (nk)I + 21 f 2 (nk) — f~ (nk)l .

The first term on the right of (4.13) is bounded using (4.5) as follows

(4.14) Iw( ,nk) — W I 1 = 
< C 6

(h~ + k
2

]/h,,

From ( H 5 ) ,  we see that

(4.15) lf 1
(nk)—f~ (nk) I + I f 2 (~~)—~~ (~~) I < 2 r o

Since k = h~ by hypothesis, we can use Lemma 5, (2.2) and (H5) to bound the second te rut

on the right side of (4.13). We obtain

1w — W *I  < C IlF—F~Iln n l ,= — 
L ( 0 ,T ;H°)

(4 . 16) -

C

In orde r to treat the thi rd term on the right of ( 4 . 13 )  we use the triangle inequality,

p _r *hz (~~,nk) — z  1=
(4 .17)  ~ _r * ~ _r * ~ _r *

.:~. Iz~
_r ( . ,nk) — 

h ( . ,n k ) 1 1 + Iz 
h (~~, nk)  — z

h

Using ( 3 . 3 . b ) ,  (3 . l Q . a) , and ( 4 . 7 )  we have for n = N 0 NT
C

lz h ( , nk)  — 2
h 

I l,~. 
< ~~~ ft

2 
+ k

2
)hl~~h

_r*hl
Q

(4 .18)  < 
~~ 

(h2 
+ k2 ] {I

~~hh + Ir*I)

< C (h2 
+ k2 ]/h .

Combining the above estimates, we obtain

Iu(.,nj€) — U I l = 
< c{c0 + [h~ + k2

]/h 1 + (h 2 
+ k2

1 /h )
(4 .1 9)

+ I~~~~~( . ,nk ) - z
h ( . n k ) J

—12—



In order to estimate the last term on the ri ght of ( 4 . 19 ) ,  we shall use the continuous

dependence result  fran ( 2 . 7 ) .  We obtain
~ — r~ ~ _ r *

(4.20) Iz~
_ t
(.,nk) — z ~ ( . ,nk) j 1 = 

< C
1
hh Z

P r (O ,.) — , h (Q
~~

)hl
’
~t T )

For any function y ( t )  a W2 ’ [t
0 , T J ,  we now define ‘k~ 

to be the piecewise linear inter-

polate of y on the tim e mesh of widt h k . Then we obtain (using properties of a l inear

interpolate )

(t0,T)

‘P _r * C
( 4 . 2 1 )  < II Z’ P r (O , .) — I Z~~

r
(Q .)fl + Ills h 

~~~~ — z
!’l

+ max Z
P _ r

(O , f l k )  — z h (Q ,n k ) I .x x

By standard results in approximation theory, the first two te rms on the r ight of (4.21) are

bounded by

( 4 . 2 2 )  C k2 ( H z ~~~~ (Q , . ) h I  
(t
0,
Tj + ~~~~~

Next , differentiat ing equation ( 2 .3 . a )  and using Lenena 2 and the Sobolev lenina , we obtain
0for any ~~€ H

E0 ,T1 
< CI~~~(.,t)ht 6

(4.23)
< cli ~i iL~ , for 0 < t

0 < t < T

Combin in g the above estimates and using ( 3 . 3 )  and (3.lQ.a) to see that bh ’P -rfl 0 < 2M and

hI’Ph 
t H 0 < 2M , we get

Z
x 

(o ,’)ll [t
0 , T)

< C k
2 

+ 
• 

max Iz~
_r

(0 ,nk)  - z:h

r 
(0 ,nk )  I

(4.24) n N
0
,. . . ,N~ 

*
< C  k2 

+ max ~~~~z’ P r (O ,nk) - 
~~~~ 

2~
h
r

n=N
0 ,. ..

+ max 
~ z h 

(0) — z 
h (Q ,nk)  I .

— ax ~ ax

—1 3—
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using ( 3 . 3 ) , ( 3 . 10 ) ,  and (4.7) we est imate the last term on the right of (4 .24 ) by

~ 
‘P~ —r~ ~h r 2 2max L~— Z
n 

(0) - -~— z  (0 ,n k ) I  ~~~-‘ I h  + k I II ’P h
_r dlI O

(4. 25)

+

Next , using ( 2 . 4 )  and the trian gle inequality, we see that the second term on the right of

(4 . 2 4 )  is bounded by
d

l ‘P — r a hmax — z (0 ,nk)  — — Z (0)ax ax nn=N
0

, . . .  , NT

~~ 
1g (nk) 

- (0 ,nk) - [f (nk ) - f  (n k) J - -~ — z h (o)
— 

n=N N p ( O )  ax 2 1 3x n

~~~
n=N

O .~~~ .,NT ~~ *j- g ( nk) — g* (nk)~ + (0 ,nk)  - ~ — W ( 0 ) I

+ I ~~~~ ~
‘n~~

0
~ 

— j
~

- w (0) + If2 (nk)—f~ (nk) I + If 1(nk)—f~ (nk)  I }

+ max —

~~~~

- g * (nk) — p ( O )  ~~~~W* (0) - p (0) t f ~~(nk) —~~~(n k ) ]
n=N0,. . .

— p ( Q )  ~~~ ~~ h (0)1

a term
1 

+ term
2

Using (16), (4 .5) ,  and (4 .16) we can boun d the first term on the right of ( 4 . 2 6 ) .  We

obtain

(4.27 ) term
1 

< C{ c
0 

+ [h~ + k
2
1/h

1
}.

We note from ( 3 . 9 )  and (3.10) that the second term on the right of (4.26)  is just J ( ’P h
)

from our Problem We then use Lemma 6 to obtain the a priori estimate

term
2 

=

(4.28 ) 4 2 2 2
< + h + (h

1 + k ]/h.~ + (h + k J,/h 1.

Then combining (4 .19), ( 4 . 2 0 ) ,  and ( 4 . 2 4 ) — ( 4 . 2 8 ) ,  we see that f or n = N
0 

N
T

(4.29 ) Iu ( ,nk) — u0I 1 ~~c(€ 0 + h + [h~ + k2)/h
1 
+ ft 2 

+ k
2

)/ h }~ .

—14—
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3 - k and ( I
l 

= k ~ ‘~~ ‘ , we obtain

~4 • 3 i ’ )  u( ~~, nk )  - U
n l i ,  C(~~0 +

I t n N N
T. 

which was to be proved. I

• ass mi ’ t t a t  the l inear  programming problem described in Sect ion 3 is solved to

W it t i n  the t ci,,, st si’

~~~~~ ~
- 
~l

t a r som e Ct
1 

‘ . . Rep lacing the estimate ( 4 . 2 8 )  by the above inequality, we obtain the

t allas i tt~ error estimate.

H-l
Corollary Tl’. A. sume the hypotheses of Theorem 1 are satisfied. If = 

~ Cf ~‘ .

i=l
s i t e  so iu t ion  - r  t h e  l inear  prograsuning problem defined by (3.15) , satisfies J(’P~~) <

I c i i  f a r  n = N N we hav e for some constant C
13 > 0

u ( , n k )  — 

~n
1 l ,= ~~~C 13

[r
0 + k + 01

] .

5€ i i  . i (  I f i n a l l y  give proofs for Lemmas 5 and 6 which were stated previously.

P i e r of Loneta S: To prove th i s  lemma we will need to make use of results f rom el l iptic

i t t  i i  . ty  e r .’ • spectral  theory in Hu bert spaces • and the theory of interpolation

spa ces.  ~
,, . a .o i l  assume the reade r is f a m i l i a r  wi th  these concepts , since to provide

- l i - i  ~ .t l~~d ixj I s i t  l sn ,i would u n d u l y  lengthen  the proof. In orde r to simp l i f y the exposi-

t ion , sc t i n t  introduce some additional notation. Let Q be the solution operator for

t t -  two t a t  beundary value problem

a )  — 
~~~ ( I -  -

~
-
~
- )  + = f , 0 < x < 1

(4. 31) UI y(O) 0

a) yll) = 0

V = ,~t > .  ç. be the solution operator for the  - ‘t alerk iri approximation

~ 31). .a’s- = Q f is defined by
~ 

h~

1. 32) a (’. ,v ) = (f,v ) , v ~h
1 

h
1 

h
1 

h
1 

h
1

- t  L = c, 1 ( i . e . ,  the inverse of on S~ ). For normed spaces X and Y ,
h1 

i-i1 1 1
i t  I (X , Y)  , ‘, ; ot c the space of l inea r operators from X to Y and II .Il ~ (X 1) the

~‘ ‘ r (  norm in t h i s space . We shall first  e,~tab1 ish that

(4.33) < Cu 7”8 w IIn h l , = _ .  ‘h
1 

n O

— 1 5 —

4
‘ I



We note that

I W n I l =  
= 

~h1 
L

b 
W
n I l =

I ~Q~1-~~~1 
w~I 1 + IQ 

~~ l f l l

(4.34)

~~
. I~~ 

L
b W

n 
- ‘h

1~ 
t
~h 

Wn I 1 =  + IIh Q L~ W
n 

- Q 

~~i 
W
n I l.=

+ IQ Lh 
w~I 1,,

where I is the interpolation operator mapping H~ ~4 
. By the inverse properties of

1
S~ given in ( 3 . 4 ) , we see that

1 

~h 
L

h 
W

n 
- ‘h

1 
Q L~~ W

n I 1, =

(4. 35) < C h
1~~

”2 
~~h1 

L
b1 

Wn 
— ‘h

1 
Q L1~ 

W
n ‘o

C h~~~
”2 {li Qh 

L
b
1 

W
n 

- Q ‘it
1 
~n~O 

+ ‘IQ 
~
“h1 

W
n 

- ‘h
1 

Q L
b 

wi!
0

).

Using standard properties of the Galerkin approx imation , we note that the  f irst  term on the

right of (4.35) can be estimated as follows :

(4.36) h
1~
”2 1

~~ h1 
- Q)L

h Wn 1I O < C h
1
3”2h~

”4IIQ Lb W I 1
714 .

Also , using (3.5.a), we obtain

(4.37) h 312
llQ L

b 
W
n ‘h

1~ 
L
b 

W
n

il
O 

< C  h
1
312

h~~
4 I1 Q L~ w f l 714

The n , using (3.5.b) and the Sobolev lemma, we see that

IIh Q Lh
W - Q Lh

1 
Wn I i =  ~~. 

1I )~ Q L~~ Wn I 1 + IQ L~~ Wn I i =

( 4 . 3 8 )  ,~~ (C
3 

+ 1) I Q L
b 

W~ I 1 =

< c  IIQ 
~~~~~ 

w~ll
714

We then collect terms in the above inequalities and use a standard a priori estimate for

elliptic problems (i.e. Q c £(H 1”4, H7”4) (10)) to obtain

Iw~I 1,,, < cll Q L
b 

W
n

1i 7/4

( 4 . 3 9 )
< C D L . w U

— n1 tt -l/4

where the last norm is defined below in ( 4 . 4 1 ) .  Then , in orde r to obtain ( 4 . 3 3 )  we need

—1 6—
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only show that

(4.40) IlL WnIi_ l/4 < CIiL~
”8 W 1 1

0

Let P:L2 -
~ S~ be the L2 projection opera tor into S~ . Note that L

h 
is self-

adjoint , so t,~~
’8 is also self-adjoint . Then we see that
1. (L w , v )

IIL
h 

W
nlI _i/4 

~~~~~ 

h
1 n

(L W ,Pv)
n

= ~~~~~~ l viiv € C  1/4
(4 .41)  0

(L 7”8 
~ ~l/8 Pv)

h1 
n

= Il vilv E C 0 1/4

7 8 
I 1~

1
~
8 

~II I~ ” Wnll o v E C ~ 
Ii Vii 1/4

Next , since we have that

(4 .42 ) IIL~(2 Pvl10 
= (a(Pv ,Pv) ) 1”2 < dl PvlI 1

( 4 . 4 3 )  llL~ Pvi1
0 

< f l Pvi I
0

we can use an interpolation theorem due to Heinz (9] (compare also with (10 1 ) to establish

that

(4.44 ) H ~~/8 Pvl I 
0 

< dl PvIl 
1/4

Then , sin ce approximation properties of yield

(4 . 45) 11 pv1i 1,,4 < di vil~,,~

we can combine (4.41) , ( 4 . 4 4 )  and (4 .45) to obtain

(4 .4 6) L0 
w~n 114 < dii~~

”8 W U
0

Now, to establish ( 4 . 8 )  we solve a set of first orde r differen ce equ at ions arising from

( 3 . 6 )  to obtain

(4.47 )

.[I + 2~~~h1~ 
P F ( . , ( n  -

L _ _ _ _ _ _ _ _ _ _ _ _
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Then we see tha t

I l L 7”8 W I  < I i kL 7”8 ( I  + 
~ 
L~~ 1~~ PF (~~,(~ — ~~‘ )k)ll~h

1 
n o

n_ i

(4.48) + Ic ~ llL~
”8 (lx + 

~
- Lh

) 1
(I — 

~~
. L.~~i } ) [ j  + ?- Lh

l
]

h Ii
c(H

0
B
0
)j=l I

ll PF (~~,(n - ~~- —  j]k11 0

For the f i r s t  term on the ri ght of (4.48), we obtain

— l 1Il k 1~~
’8 

( I  + 
~ 
L~~ J PF(~~,(n — — ) k ) l I

2 0

II lI PF (~~, [n  — 
~-Jk)II 0

~_ 2
7,
~
’8 

k1”8 Ic ~~ )
7
~
’8
L~~

8 ( I  + ~~~L~
1

] 1 

£ ( H ° , H° )(4.49 )

< 2
’
~”~~k

1”8 
( A

7/8
~sup ~ I ~1 h w ( ’ ~ tn —

0< A<= ••.. -‘

< 2 II P F ( • , (n — ~-Jk)lI 0 (for Ic < 2 ) .

Since it is known that the eigenvalue s A~ of 

~~1 
sati sfy  0 < A , < B h

2 
, the mesh

1 — 0 1

ratio restriction kh1
2 

< 10 contained in the statement of Lemma 5 implies that

(4.50 ) A . < 8 t
1 —  0 0

FroSt E l ) ,  we know that there exist constants C
0 and such that for j  = 1,2

8
0 

t
0end

l _ k A ~ —C
0~~~~A j

1 + 1A
(4 .5 0) 

Ic 
< K0e

-Cx 7/8 , bounde d for all x > 0 , we use (4 .50)  to see thatThen , sin ce clearly e x 15

÷ — 
2~~

’h
1 

+ 
~~~~1

1
~~

h1
t ( H O ,H O )

< sup
8 

Il — . A
0<A <  _P

j;T2. II + I 1 +

(4.51) ~~ ~~~~~~ I 
e~~0 ~ Aj

718

C0~~~Aj ( k 7/8
— — —Aj)

< sup
8 

e 
7/80 0 (jk/2 )0 <A <—

Ic

-7/ 8
< c12 (jk/2 )

—1 8-
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Thu s - s i l t i t  a ,~ t i t ’  - above est  imate s , we have

W I l  21! PF (. In - ~ )k)(! 0 
+ (I PFII k 

n-i 

8“I L (O,T;H ) j 1  (jk/2 )

I( PFl(
L~~(O ,T;H

0
) 

(2 + dt)

(4 .52)

8C12 1(I PFI( (2 + — T
L ( 0 ,T :H  ) 2 7

~~
8

< C I I FI(
— 

L ( 0 ,T:H °)

Finally, combining (4.39), (4.46) and (4.52) proves Lemma s .

Proof of Lemma 6; From (H5), (3.9), (3.10), (4.5) and (4.16) we see that for all

~~~~~ ~~~~~~~

~
max g * ( n k ) — p (o) (f ~~(nk)_ f ~~(n1ç)~~_p ( o )~~_ w * ( o ) _ p ( o ) L Zn

h ( 0 ) )
n=N 0 , . .  . ,N

T

< max I’j g * ( n k )_ g (nk)~ + p (0)If
~~
(nk)—f

2
(nIc)I + p (o If~~nk —f1 nk IniiiN

0 , .. .

+ p ( O ) ) ~ _ w * (o) — ~~— W (0) j + p ( 0 ) ) — w ( o )  — ~~~~
- (0,nk)~

+ p(0) )~~~ z
h (O) - ~~~ z~~~

r (0 ,n k ) I }n

< CEc~ + (h~ + k
2

)/h
1
] + max p(0)I~ — Z

h (O) —

n =

Now

I 
X ~~~~ (0) - ~~—r (O ,nk) I

( 4 .  ‘~4 )

~i 
_r * ~ ~~~~~ ~< 

~
_ z h 

(0) — ~— z (0 , n k )  + ‘
~
— z (O ,nk)

From (4.7), (3.3), and (3.10) we see that for n = N
O
....,N

T
(1 _r * ~ _r* C 

2h 
(0) — ~~~~ z 

h (0,nk)) < —
~

- [h 2 + k ]Il tJi _ r *l(
ix n lx — h h 0

( 4 .  5 5 )

< C[h
2 

+ k
2
1/h .

±1±!
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Next using the Sobolev lemma, Lemma 2 , and (3.3.c), we obtain f o r  n N N
Ti ,lSid far

any ‘
~k ~ 

Xh
~ —p+r~r~ tji _.~I+r_r *

(0 ,nk) I < lI z II
— 2

(4 .56) ~ dI~~~-sp# r— r ~ I I~~

< C ( c
0 

+ ‘~~
‘h 

—

Choose 1’h 
such that

a) 
~h

(ih ) = ~~( ih)  , i = 1 H— i ,

4.57) b) ‘
~
‘h~
°
~ 

= f~~(0)

c) 
~~~~~ 

= f~~(O )

Then a Kb and is almost equal to I
ha~ 

the piecewise linear interpolate of c

Then from ( 3 . 5 ) ,

( 4 . 5 8 )  
~~~~

0 o ~~- ~h
’h~~ O 

+ I l I
h~~

4PIl
O

,~~
II I4t

h
_I
h~

II
O 

+ Ch II
~

Il l
But we see that

1
- ‘1’h~ 

= (1 - ~~) (f~ (0)-f1
(o)j , 0 < x <

L ~ - —  (H—l)) Ef~ (o)—f 2
(0)] , ( H — l ) h  x < 1

so we have

(4 .60 )  — I
h~

II O 
< C  Lo

Combining (4.53)—(4.60) , we obtain

(4. 61) 
~~~~~ 

< C ( a
0 ÷ h + (h~ + k2)/h1 + (h2 + k2

)/ h)
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